Risikoanalyse und Resilienzcheck Wasser für den Aktionsraum Partheland

erstellt im Auftrag des Landkreises Leipzig

Das Vorhaben "Gestaltung Resilienter Infrastrukturen" wird innerhalb des Programms *Region gestalten* des Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen in Zusammenarbeit mit dem Bundesinstitut für Bau-, Stadt- und Raumforschung gefördert.

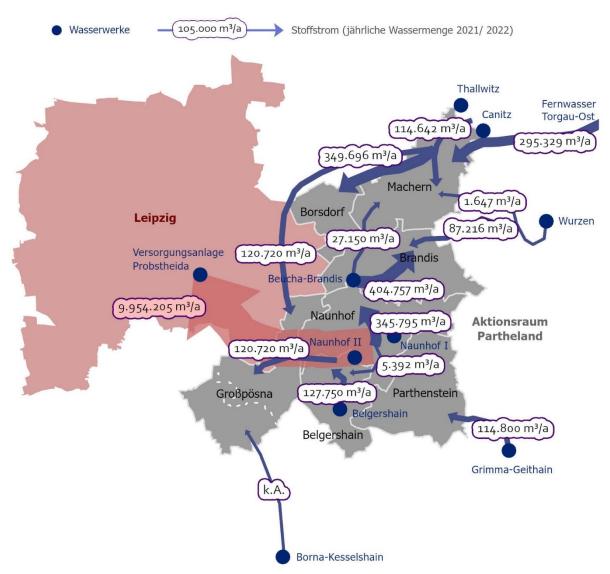
Fakultät Architektur der TU Dresden, 01062 Dresden Institut für Landschaftsarchitektur, Lehr- und Forschungsgebiet Landschaftsplanung

Stand: 22.07.2024

Aktionsraum Partheland

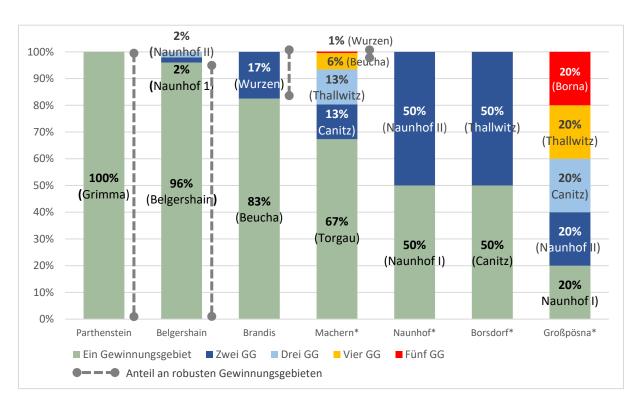
<u>Problemstellung und Diskursanalyse:</u>

Der Aktionsraum Partheland am östlichen Rande der Stadt Leipzig besteht aus den Gemeinden und Städten Borsdorf, Machern, Brandis, Großpösna, Naunhof, Parthenstein und Belgershain. Ein wasserrelevantes und besonders prägendes Thema im öffentlichen Diskurs ist der mengenmäßige Zustand des namensgebenden Gewässers 1. Ordnung – der "Parthe". Sie gibt einer sehr vielgestaltigen Kulturlandschaft mit einem abwechslungsreichen Mosaik von Wald- und Offenlandschaften und weiten Auenlandschaften ihren Namen, wies aber in den letzten Jahren besonders häufige Niedrigwasserperioden sowie Austrocknungserscheinungen auf. Diskutiert wurde daraufhin eine Verbindung des niedrigen Oberflächenwasserstandes mit der Grundwasserförderung der Großwasserwerke Naunhof I und Naunhof II (betrieben von den Leipziger Wasserwerken (LWW) zur Trinkwasserbereitstellung für die Stadt Naunhof, die Stadt Leipzig und andere angrenzende Kommunen). Zugleich konzentrieren sich im Einzugsgebiet der Parthe jedoch auch andere wasserzehrende Nutzungen, z.B. Kiessandabbaue, und sind auch hier erste Auswirkungen des Klimawandels unübersehbar. Dies ist Anlass, sowohl die Trockenheitsfolgen als auch Hochwasser- und Starkregenfolgen für das landschaftliche Gesamtsystem des Parthelandes und seiner Siedlungen sowohl auf der physisch-materiellen als auch der Handlungsebene zu evaluieren.

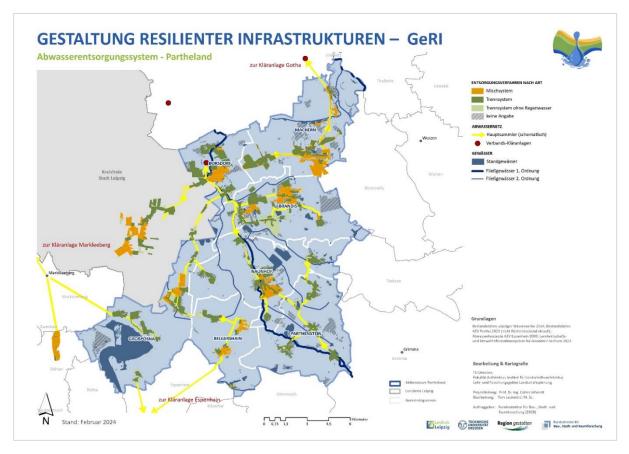

Wichtige Analysepunkte:

Das **Partheland** umfasst ca. 230 km² östlich der Stadt. Rund 46.000 Menschen leben hier (StLA 2022). Über die Hälfte des Aktionsraumes wird dabei ackerbaulich genutzt. Wald- und Siedlungsflächen nehmen jeweils etwa 16 % der Fläche ein. Während Grünland rund 10 % des Parthelands prägen, beläuft sich der Anteil an Gewässern gegenüber anderen Landnutzun-

gen zwar quantitativ auf lediglich 4 %. Im Landschaftsbild sind die Gewässer dennoch stark wahrnehmbar. Gegenüber anderen Auenlandschaften von Fließgewässern 1. Ordnung in der Region Leipzig ist die Parthenaue zwar relativ unbeeinflusst, gemäß der Fließgewässerstrukturkartierung sind im gesamten Partheland trotzdem nur wenige, sehr kurze Abschnitte von Parthe und Gladegraben als mäßig verändert einzuordnen. In allen anderen Teilen sind die Fließgewässer zum Großteil stark oder sehr stark verändert. Zudem gibt es einige grundwasserabhängige Biotope, die gegenüber dem Klimawandel besonders sensitiv sind. Die Abhängigkeit ergibt sich dabei in erster Linie über die pflanzlichen Lebensgemeinschaften, welche ihren Wasserbedarf unmittelbar aus dem Grundwasser decken. Im Aktionsraum Partheland liegen sie in unterschiedlicher Dichte im gesamten Gebiet vor. Im Norden finden sie sich vor allem um den Tresenbach und die Mulde, mittig liegen sie rund um die vielen künstlichen Teiche und Standgewässer. Als besonders sensibel können zudem einige FFH-Gebiete eingestuft werden, die kaltstenotherme und stenohygrophile Arten gemeinschaftlichen Interesses beherbergen. Dies betrifft beispielsweise das FFH-Gebiet "Parthenaue", welches neben sensitiven Lebensraumtypen (LRT) wie Feuchte Hochstaudenfluren oder Erlen-Eschen- und Weichholzauenwäldern auch sensitive Arten wie etwa Kammmolch und Dunkler Wiesenknopf-Ameisenbläuling schützen soll.


Trinkwasserseitig werden die Städte und Gemeinden des Parthelandes von 11 Gewinnungsgebieten versorgt, die ihr Trinkwasser ausschließlich aus tiefen Grundwasservorkommen oder aus durch Uferfiltrat der Mulde und Elbe gespeistem Grundwasser beziehen. Wenn man die Trinkwasserströme in ihrer Größe betrachtet, wird mit Abstand der größte Teil des Trinkwassers von den Wasserwerken Naunhof I und Naunhof II gebündelt in die Versorgungs-

anlage Probstheida und von dort ins Stadtgebiet Leipzigs befördert. Betrachtet man überschlägig die Jahresverbräuche der Städte und Gemeinden für die Jahre 2021 bis 2022, beläuft sich die Trinkwassermenge von Naunhof I und II nach Leipzig auf ca. 9,9 Mio. m³ pro Jahr (nach Angaben der Wasserversorger im Aktionsraum) (Abb. 1). Naunhof besitzt eine Schlüsselrolle nicht nur in der Selbstversorgung, sondern vor allem in der Versorgung des Großraumes Leipzig. Anhand der Jahresberichte der Leipziger Wasserwerke lässt sich sagen, dass für das Jahr 2020 ca. 27% des Trinkwassers für das LWW-Versorgungsgebiet aus den beiden Naunhofer Wasserwerken kam (LWW 2021; 2022). Gemessen an der Sächsischen Wasserstatistik sowie den Gegenüberstellungen der Leipziger Wasserwerke liegt der private Trinkwasserverbrauch je Einwohner gegenüber dem Bundesschnitt auf einem niedrigen Niveau und ist seit 1993 bis 2022 von 115 Litern pro Einwohner und Tag auf 93,6 Liter pro Einwohner und Tag gesunken. Seit 2000 bleibt er auf einem niedrigen Niveau (LWW 2023). Der Bundesschnitt liegt hingegen bei etwa 130 Litern pro Einwohner und Tag (UBA 2022). In Hinblick auf die Versorgungssicherheit in Kombination


Abb. 1: Schema der bekannten Trinkwasserströme im Aktionsraum Partheland, Stand 01/2024. Die Pfeilgröße ist bis auf TW-Menge nach Leipzig proportional (eigene Darstellung auf Grundlage: Jahreseinspeisung 2022 des VEW; Jahresverbrauch 2022 des Eigenbetriebes Wasserversorgung Naunhof; Jahresverbrauch 2022 des VVGG, Jahresabgabe LWW für 2021/2022 sowie Jahresförderleistung 2020 der Wasserwerke in "LWW 2022c: Flyer Wasserwerke online").

mit den Belangen des gesamten Landschaftswasserhaushaltes sind innerhalb des Aktionsraumes Machern, Großpösna und Brandis resilienter gegenüber Trockenphasen und unvorhergesehene Ereignisse aufgestellt als die anderen Kommunen des Plangebietes. Sie greifen auf jeweils eine relativ hohe Zahl unterschiedlicher Wassergewinnungsgebiete zurück, bei einem trotzdem vergleichsweise hohen Anteil an Gewinnung innerhalb der Kommune, gleichzeitig weitreichender Vernetzung ins Umland sowie der Nutzung mehrerer Ressourcenarten. Dementgegen weisen die Gemeinden Parthenstein und Belgershain im Vergleich der Kommunen des Plangebietes den größten Handlungsbedarf zur Absicherung einer resilienten Trinkwasserversorgung auf, da sie nur Grundwasser aus einem einzigen Gewinnungsgebiet nutzen. Allerdings können die zugehörigen Grundwasserkörper als besonders robust eingeschätzt werden, da sie ein ausgewogenes Verhältnis von genehmigten Wasserentnahmemengen und zukünftiger Grundwasserneubildung aufweisen, selbst unter Einbeziehung der WETT-REG-66-Prognose (Abb. 2). Insgesamt sollte im Plangebiet Partheland alles darangesetzt werden, um eine größere Resilienz der Trinkwasserversorgung im Falle längerer Dürreperioden zu erreichen. Dazu sollten die drei Resilienzprinzipien der redundanten Vielfalt, der robusten Elastizität und der dezentralen Konzentration noch stärker als bislang umgesetzt werden, indem die Vielfalt der Wasserressourcen, aber auch der Gewinnungsgebiete gestärkt, die Flexibilität in der Nutzung der Ressourcenquellen erhöht und eine gute Balance zwischen lokaler Autarkie und Vernetzung hergestellt wird. Eine verbesserte Rückhaltung von Niederschlagswasser in der Landschaft und ein gezieltes Regenwassermanagement zählt ebenso zu den vordringlichen Zielen.

Abb. 2: Diagramm zur Flexibilität und Robustheit der Trinkwasserversorgung im Aktionsraum Partheland anhand Zahl der Fördergebeite Anteil der Fördermengen und Fördergebieten mit zukünftig guter mengenmäßiger Grundwasserbilanz, mit (*) markierte Gemeinden enthalten Vermutungen zur prozentualen Aufteilung auf die Wasserwerke. In den Daten der Wasserversorger wurden die Wasserwerke Canitz & Thallwitz sowie Naunhof I & II zusammengefasst (eigene Darstellung anhand von Daten der Aufgabenträger Wasserversorgung und des SMEKUL 2023).

Die Resilienz des Siedlungswassermanagements gegenüber Wetterextremen ist im Vergleich der Kommunen des Aktionsraumes besonders hoch in Brandis, Parthenstein und Naunhof ausgeprägt. In diesen Kommunen gibt es besonders gute Versickerungsleistungen bei Spitzenabflüssen, vielfältige bauliche Arten von Versickerungsanlagen, einen hohen Anteil an Trennsystem gekoppelt mit vergleichsweise großen Stau- und Rückhaltemöglichkeiten sowie hohen Einleitungsanteilen in Oberflächengewässer und mitunter trotzdem einem Kerngebiet, das im Mischsystem zentral entwässert. Dies bedeutet vor allem eine gebündelte Erfahrung mit verschiedensten Systemen. Auffällig ist, dass keine Kommune eine durchweg niedrige Resilienz aufweist. Lediglich Borsdorf weist eine durchweg mittlere Resilienz bei eher geringer Vielfalt und Redundanz an Versickerungs- und Rückhaltemöglichkeiten auf. Auffällig ist zudem, dass ein Großteil des Parthelandes in die Kläranlage Borsdorf entwässert. Dabei sind die vielen angeschlossenen Siedlungen von Mischsystem und Trennsystem, teils mit Vor-Ort-Versickerung, durchzogen. Nicht nur führt dies mitunter zur Ableitung von Niederschlags- und Oberflächenwasser, welches vor Ort im Wasserkreislauf benötigt wird, sondern auch zu einer hohen Auslastung der Kläranlagen (Abb. 3). Die Abwasserentsorgungsverfahren sollten daher in Einklang mit dem Wasserhaushaltsgesetz (vgl. §55) modifiziert und möglichst zu Trennsystemen mit hohen Versickerungs- und Verdunstungsanteilen entwickelt werden.

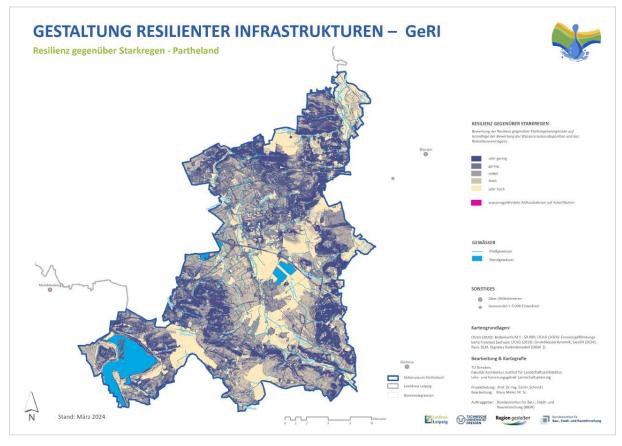


Abb. 3: Abwasserentsorgungssystem des Aktionsraums Partheland (Darstellung TUD 2024 nach Daten der Aufgabenträger Abwasserentsorgung). Orangene Siedlungsflächen flächen werden im Mischsystem entsorgt. Grüne Siedlungsflächen entsorgen Regenwasser und Schmutzwasser getrennt voneinander. Hellgrüne Flächen markieren Siedlungsteile, in denen Trennsystem mit hoher Versickerung, Gewässereinleitung und Verdunstung vorliegt. Gelbe Pfeile zeigen die Entsorgungsrichtung zur angeschlossenen Kläranlage.

Auch die umgebende Landschaft ist mit klimawandelbezogenen Risiken für den Wasserhaushalt konfrontiert. In Abhängigkeit von Hangneigung, natürlichem Retentionsvermögen und Vegetationsbedeckung ist sie von Starkregenereignissen und damit Bodenerosion sowie möglichen Folgeschäden, z.B. Verschlammung von Wegen oder Siedlungsteilen und einer begünstigten Hochwasserentstehung, betroffen. Die landschaftliche Resilienz gegenüber Starkregen ist innerhalb des Aktionsraumes besonders hoch in den beiden Kommunen Naunhof und Brandis ausgeprägt. Dort kommen große zusammenhängende Wald- und Grünlandflächen vor, welche durch ihre konstante Bodenbedeckung eine abpuffernde Wirkung zeigen. Treffen ein hoher Anteil an Ackerflächen mit zeitweise geringer Bodenbedeckung auf Böden mit geringem Wasserspeichervermögen oder geringem Grundwasserflurabstand, kann die

Resilienz gegenüber Starkregen als vergleichsweise gering betrachtet werden. Dies ist in den Kommunen Machern und Borsdorf der Fall, sodass insbesondere hier auch an verbesserte Rückhaltemöglichkeiten und Retention in der Fläche gedacht werden sollte (Abb. 4).

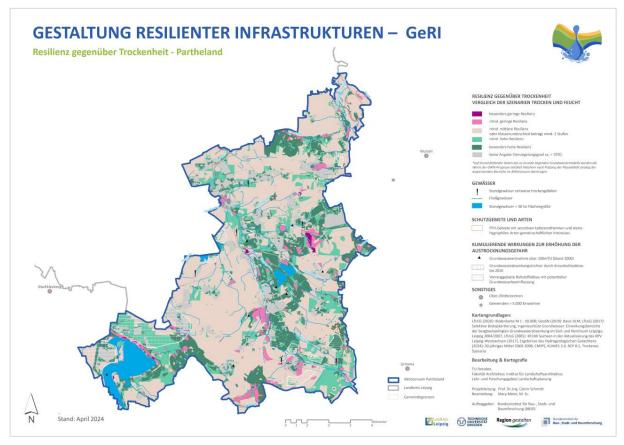
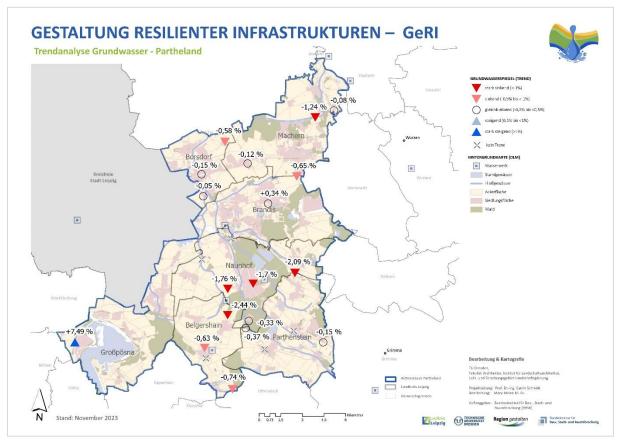

Betrachtet man Fließgewässer, Standgewässer und Landnutzungen genauer lässt sich auch landschaftlich eine Austrocknungsvulnerabilität und darüber hinaus die Resilienz gegenüber Trockenheit ableiten. Hinsichtlich der Austrocknungsgefährdung steht es um die Fließgewässer im Partheland weniger gut. Insbesondere die Zuflüsse Thräne, Gladegraben, Faule Parthe und Mittelgraben werden hinsichtlich ihrer Austrocknungsgefährdung als "sehr hoch" eingestuft, auch die Parthe selbst größtenteils mindestens als "hoch". Ebenso wurden der Tresenbach sowie der Ottendorfer Saubach

Abb. 4: Karte der Vulnerabilität gegenüber Starkregen im AR Partheland (auf Basis Schmidt et al. 2011/2021). Dunkelblaue Flächen zeigen eine geringe Resilienz gegenüber Starkregen. Hellblaue und hellgelbe Flächen stehen für eine hohe Resilienz gegenüber Starkregen. Erosionsgefährdete Abflussbahnen auf Ackerflächen finden sich vor allem zwischen Naunhof und Großpösna sowie um Machern.

im Norden des Aktionsraumes als sehr stark gefährdet bewertet. Eine mittlere Einstufung gibt es somit nur bei wenigen Fließgewässerabschnitten im gesamten Gebiet - eine geringe Gefährdung gar nirgends. Die besonders gefährdeten Gewässerabschnitte umfassen zumeist sandgeprägte Tieflandbäche, welche sich durch niedrige Fließgeschwindigkeiten und geringe Wasserhaltefähigkeit der Sohle auszeichnen, so z.B. zwischen Pomßen und Naunhof, wo besonders häufig Austrocknungserscheinungen wahrgenommen werden konnten (vgl. Abb. 6). Austrocknungsvulnerable Standgewässer liegen verstreut im ganzen Partheland, besonders gehäuft finden sie sich jedoch im Norden in der Gemeinde Machern (Lübschützer Teiche, Teichkette am Bach Gottschalke). Bereits zeitweilig ausgetrocknete Standgewässer sind ebenfalls über den gesamten Aktionsraum anzutreffen. Dabei handelt es sich z.B. um Kleingewässer nahe Pomßen und Grethen in der Gemeinde Parthenstein oder an den Bahnteichen in Borsdorf. Schaut man auf die aktuelle <u>Resilienz der Raumnutzungen</u> gegenüber Trockenheit, die u.a. von der Art der Landnutzung, den Bodeneigenschaften oder der Bewirtschaftung, z.B. der Zusammensetzung der Wald- und Forstbestände abhängt, fällt auf: Naunhof ist wegen seiner Mischwaldbestände aktuell besonders resilient zu bewerten, wohingegen Parthenstein aktuell einen besonderen Handlungsbedarf zeigt.

Für die <u>Prognose der Grundwasserneubildung</u> können die Ergebnisse des hydrogeologischen Gutachtens (Quelle IBGW 2024) genutzt werden. Die Klimaprojektionen weisen dabei ein möglichst feuchtes und ein möglichst trockenes Szenario auf. Der Betrachtungszeitraum


Abb. 5: Karte mit Risiko- und Potentialflächen im Szenarienvergleich der zu erwartenden Resilienz gegenüber Trockenheit im Aktionsraum Partheland 2071-2100, Szenarien nach IBGW 2024 (KliWES 3.0), Bewertung nach Schmidt et al. 2011/2021 (Darstellung TUD 2024). Rote und dunkelrote Flächen weisen sowohl in der trockenen als auch in der feuchten Projektion mindestens eine geringe Resilienz gegenüber Trockenheit auf und sind daher besonders gefährdet. Grüne und dunkelgrüne Flächen weisen in beiden Projektionen mind. eine hohe Resilienz auf und sind damit Potentialflächen.

beträgt 30 Jahre (2071 – 2100). Daraus resultiert für die Vulnerabilität gegenüber Trockenheit ebenso eine Betrachtung in Szenarien. Dabei fällt auf, dass einzelne Flächen im Aktionsraum zukünftig unabhängig vom Szenario sowohl unter trockenen als auch feuchteren Projektionen besonders gefährdet sind. Andere Flächen wiederum, sind auch unter Trockenheit gering gefährdet (Abb. 5).

Betrachtet man demgegenüber – den Status Quo – die langjährigen Trends der <u>Grundwasserstände</u> fällt auf, dass seit Aufzeichnungsbeginn die Grundwasserstände an den Messstellen in Naunhof, Belgershain und Machern zwar langsam, aber kontinuierlich sinken (Abb. 7). In Zusammenhang dazu sind für die Parthe in Trockenperioden Risiken für den Wasserhaushalt enstanden, wie die häufiger werdenden Niedrigwasserperioden zeigen (Abb. 6).

Abb. 6: Niedrigwasserperioden am Parthe-Pegel Albrechtshain 1 (Darstellung TUD 2024 auf Grundlage der Durchfluss-Tagesmittelwerte des LfULG 2024 sowie der hydrologischen Hauptwerte).

Abb. 7: Karte des mengenmäßigen Grundwassertrends im Aktionsraum Partheland. Nicht beschriftete Station weisen keinen statistischen signifikanten Trend auf (Darstellung TUD 2024 auf Basis: LfULG 2023c: Landesmessnetz Grundwasser. Trendanalyse nach LAWA-AG 2011: 4f.). Rote Dreiecke zeigen signifikant fallende Trends, blaue Dreiecke signifikant steigende. Kreise symbolisieren Messstellen mit etwa gleichbleibendem und Kreuze solche ohne nachweisbaren Trend.

Über alle bewerteten Resilienzaspekte hinweg stehen Naunhof, Brandis und Großpösna besonders resilient da. Alle anderen Partheland-Kommunen stehen im Mittelfeld, wobei Parthenstein bei vielen Aspekten eine geringe Resilienz aufweist. Die Gemeinde ist zwar im Siedlungswassermanagement hoch resilient, aber was Trinkwasser und Starkregen anbelangt, weist sie deutliche Risiken auf, ähnlich ist die Situation in Borsdorf (Abb. 8). Was am Beispiel Naunhof auffällt ist eine hohe Resilienz in der Fläche und damit eine hohe Anpassungs- und Selbsterneuerungsfähigkeit gegenüber trockenen wie feuchten Perioden im Zuge des Klimawandels - es ist ein Zusammenspiel sowohl aus gegebener als auch aus erworbener Resilienz. Trotzdem ist Naunhof auch eine

Kommune mit besonders hohen Risiken für das Grundwasser und den Wasserhaushalt der Parthe, wobei die Resilienz auch maßgeblich von der Handlungsebene abhängt. Somit steht Naunhof in vielen Bereichen gut da, weist aber punktuell doch gravierende Probleme auf und die Gefahr, erworbene Resilienz durch unangepasst Bewirtschaftung zu verlieren. Daran wird ersichtlich, dass eine hohe Gesamt-Resilienz nicht automatisch bedeutet, dass kein Handlungs- und Vorsorgebedarf mehr besteht. Letztendlich sind die Kommunen auch nicht abgegrenzt voneinander zu denken, sondern in ihrem wasserseitigen Funktionszusammenhang.

Überblick zur Resilienz gegenüber den Folgen des Klimawandels (Bewertungsmaßstab ist der Aktionsraum) Siedlungs-Hoch-Trinkwasser-Gemeinde wasser-Starkregen Trockenheit* versorgung wasser management höchste, Belgershain mittel mittel innerhalb des mittel gering Aktionsraums **Borsdorf** gering mittel mittel gering mittel höchste, **Brandis** hoch innerhalb des hoch mittel mittel Aktionsraums Großpösna hoch mittel mittel hoch hoch Machern hoch mittel mittel mittel gering höchste, höchste, **Naunhof** innerhalb des mittel hoch mittel innerhalb des Aktionsraums Aktionsraums **Parthenstein** gering hoch mittel mittel gering

Abb. 8: Übersicht zur Resilienz der Kommunen gegenüber den Folgen des Klimawandels im Aktionsraum Partheland auf Basis der einzelnen Resilienzaspekte (Bewertung TUD 2024). Die Bewertungsstufen von gering bis hoch beziehen sich auf den Aktionsraum als Vergleichsmaßstab.

^{(*} Trockenheit meint "Resilienz der Landschaft gegenüber Trockenheit" und beinhaltet die flächenhaften Landnutzungen. Punktuelle Trockenheitsfaktoren wie die Trockenheit der Stand- und Fließgewässer sowie spezifische punktuelle Gefährdungen, z.B. Grundwasserentnahmen >100 m³/d sind gesondert zu betrachten.)

Impressum

Projektleitung: Prof. Dr. Catrin Schmidt

Bearbeitung: Prof. Dr. C. Schmidt

T. Leukefeld, M.Sc.; M. Meier, M.Sc.; P. Herrmann, M.Sc.; A. Zürn, M.Sc.,

unter Mitarbeit von: M. Hellebrand, cand. B.Sc.

sowie gutachterlich: Prof. Dr. H. Mansel

Lehr- und Forschungsgebiet Landschaftsplanung Institut für Landschaftsarchitektur Fakultät Architektur der TU Dresden 01062 Dresden

Stand: 22.04.2024